Finding and fixing problems with your scripts

What is a bug?

Sometimes things don’t quite work as expected. Problems with scripts are called
‘bugs’. When you find bugs in your project, it can be difficult to understand what
part of your script is causing them. The process of fixing bugs is called,
‘Debugging’.

Useful ways to debug your scripts

Check the values of variables

If you are using variables to keep track of things like scores, you will be able to
see these on the screen. Make sure that the values of the variables are what you
expect them to be.

For example, in the Gravity Jump game, the horizontal_x variable is used to keep
track of the scrolling ground and platforms (these are sprites that are moved
sideways).

boy: velocity [T |

' boy: bounce_count [17]

 horizontal_x [0 | ‘—

Coffset_ x [77 ,’
'speed x [T

- max_horiz_speed [

Figure 1: Horizontal position of scrolling ground.

As our character walks along the ground, the horizontal value changes. By
checking the value, we can tell whether things are working properly. If a value is
not what you expect, check your script to find the problem.

Add a command to print something to the screen

Sometimes it is hard to tell if something is happening in your game. For instance,
you may not be sure that an IF statement is detecting something, or whether
sprite collisions are being detected properly. Other examples of bugs could be
when the game never gets to a part of your code, or when something keeps
repeating when it shouldn'’t.

In these cases, it can be useful to add a command to the problem section of your
script, so it prints to the screen when that point of the script is reached.

For example, observe the script below. When the space key is pressed, we may
be unsure of whether the sprite is being detected touching a black part of the
screen. We can see the bounce_count variable by making sure it is shown on the
screen, but the touching detection is trickier.

when space key pressed

if touching color 7 or bounce_count > [J _then

play sound pop
b

set bounce_count to n
5

set welocity to [
»

set y to y position + wvelocity

—

Figure 2: Script example.

A good way to check this could be to wait for the pop sound. However, we could
also insert a command to write a message on the screen when the if condition is
detected (see below).

when space key pressed

if touching color ? or bounce_count >] then

play sound pop

say for @) secs
»

set bounce_count to n
»

Figure 3: Say command added to test if script is working

Inserting such a command can help locate a problem in your script. If ‘It worked’
is not written to the screen, then that part of the script is not being reached when
itis run. You can now look at the script and work out why that is not happening.
In some cases, you may need to repeatedly check for an event, by placing a
forever loop around the commands. In the above case, the if statement will only
check for the touching color condition when the space key is pressed.

Move sprites to create the event

Sometimes it can be quicker to drag sprites into position in order to create the
situation where a command will trigger, so you can test whether it works. The
bug might be deep into the game, so by manually moving the sprite yourself, it
will speed up the debugging.

Keep things simple

When you have long scripts, lots of scripts, or just too much going on, it can be
easier to move some of the script aside so you can understand what is
happening. In some instances, going back to the basic actions can make it easier
to see the logic in your script. If things work at that stage, you can put commands
back into place, one by one, until something causes the bug to occur.

Conclusion

This should give you some ideas to get started finding out why something
doesn’t work with your scripts. Once you find out where a problem lies, you may
be able to think of a better way to do what you want. Sometimes it can help to
make your script easier to read, by breaking scripts down into parts, or stripping
them down to the essentials. Changing a script so that it still works, but is easier
to read and manage, is called ‘refactoring’. This is a very useful skill to learn and
will help you write better scripts in future.

